Strona 1 z 1

Porównanie zawartości kannabinoidów w różnych stadiach rozwoju Cannabis sativa w 3 grupach: roślinach matkach, klonach t

: 10 paź 2016, 1:43
autor: PolicyjnyPies
Abstrakt:
Chromatografia gazowa z detektorem płomieniowo-jonizacyjnym (GC-FID) została użyta do oceny zawartości kanabinoidów oraz ich profilu chemicznego podczas różnych stadiów rozwoju, w celu zbadania potencjalnych różnic pomiędzy roślinami rozmnażanymi in vitro (IVP), tradycyjnymi klonami (VP) a roślinami-matkami uprawianymi w pomieszczeniach(MP-indor). Zawartość THC we wszystkich grupach rosła wraz z wiekiem aż do osiągnięcia maksimum podczas okresu kwitnięcia. Wtedy parametr ten osiąga plateau, zaraz przed okresem starzenia się rośliny. W przypadku zmian zawartości pozostałych kanabinoidów w poszczególnych etapach wzrostu również nie zaobserwowano istotnych różnic pomiędzy badanymi grupami. W przypadku oceny jakościowej, profil kanabinoidów w poszczególnych grupach był bardzo podobny, i nie różnił się również od profilu roślin matek uprawianych na dworze. Niewielkie zaobserwowane różnice okazały się nieistotne statystycznie. Wyniki płynące z naszych badań potwierdzają, że rośliny rozmnażane przy użyciu in vitro nie różnią się zawartością kanabinoidów od roślin matek, a procedura która została użyta do klonowania in vitro może zostać użyta w przypadku komercyjnych upraw.

Skróty:
GA3: kwas giberelinowy GC-FID: Chromatografia gazowa z detektorem płomieniowo-jonizacyjnym IAA: kwas indolilo-3-octowy, indolilooctowy IBA: kwas indolilomasłowy NAA: Kwas 1-naftylooctowy, kwas naftylo-1-octowy, kwas α-naftylooctowy TDZ: thidiazuron THC: Δ9-tetrahydrokanabinol

Wprowadzenie:
Cannabis sativa od dawien dawna stosowana była w celach leczniczych [1]. Gatunek ten zawiera kanabinoidy, czyli wyjątkową grupę związków terpenofenolowych, które gromadzone są w trichomach na powierzchni rośliny[2]. Ponad 70 różnych kanabinoidów zostało wyizolowanych z konopi, a najbardziej aktywnym biologicznie związkiem okazał się Δ9-tetrahydrokannabinol zwany również Δ9-THC [3]. Wzory 6 głównych kanabinoidów zostały przedstawione na rysunku 1.
531px-T0409pm01-1.jpeg
531px-T0409pm01-1.jpeg (45.94 KiB) Przejrzano 5354 razy
Δ9-THC oprócz swoich psychoaktywnych właściwości może być stosowany również jako środek przeciwbólowy, przeciwzapalny, przeciw wymiotny lub pobudzający apetyt, co czyni ten związek przydatnym w celach terapeutycznych [4]. Terapeutyczna skuteczność konopii i Δ9-THC została dość obszernie opisana [5] [6] [7] [8] [9] [10]. Δ9-THC jest aktualnie dostępne na rynku w postaci żelatynowych kapsułek do użytku wewnętrznego, w preparacie o nazwie Marinol. Dostawa hurtowych ilości syntetycznego Δ9-THC została ograniczona do produkcji tylko tego preparatu, co utrudniło opracowanie nowych preparatów, np. czopków zawierających Δ9-THC. Z tego powodu rozważane jest pozyskiwanie Δ9-THC dzięki izolacji z materiału roślinnego. Kluczową sprawą jest pozyskanie kwiatów odpowiedniej jakości, co umożliwiłoby uzyskiwanie Δ9-THC przy użyciu niższego nakładu finansowego, niż w przypadku chemicznej syntezy Δ9-THC. Współczesne badania mają na celu ulepszenie poszczególnych odmian konopi w celu osiągnięcia dużego plonu o wysokiej zawartości THC, który mógłby być zastosowany do izolacji naturalnego THC do zastosowań farmaceutycznych.

Od lat 80 zaobserwowano zwiększającą się częstotliwość przypadków konfiskaty marihuany w USA [11] [12]. Z powodu zapylenia krzyżowego jako sposobu rozmnażania się konopi, niezwykle trudne jest utrzymanie stałego wysokiego poziomu produkcji THC w kwiatach, w przypadku uprawy z nasion, w warunkach polowych lub szklarniowych. Z tego powodu użycie zaawansowanych technik hodowli tkankowych (mikrorozmnażanie in vitro) umożliwia szybkie rozmnożenie wybranych roślin cechujących się pożądanymi przez nas parametrami. Dotychczas opracowano wiele sposobów mikrorozmnażania in vitro dla różnych genotypów konopi i miejsc pozyskiwania materiału do klonowania [13][14][15][16][17][18], a także zaobserwowano znaczne różnice w rozwoju kultur w przypadku poszczególnych metod. Ponieważ niezwykle istotne jest uzyskiwanie materiału roślinnego wysokiej jakości o stałych parametrach, została opracowana metoda rozmnażania in vitro przy użyciu segmentów węzłowych łodyg, zawierających zawiązki bocznych pędów.W celu sprawdzenia przydatności tej metody porównano ją z klasyczną metodą klonowania, pobierając klony z tej samej rośliny-matki w tym samym okresie wzrostu. Porównanie to polegało na chemicznej analizie zawartości kanabinoidów przy użyciu chromatografii gazowej.

Materiały i metody
Rośliny użyte do badań
Rośliny Canabis sativa użyte do badań wyrosły z wysokojakościowych meksykańskich nasion w konopnym ogrodzie na uniwersytecie Misisipi w 2006 r. Założono pole składające się z około 31 000 roślin, a każda roślina została otagowana przy pomocy kodu kreskowego w celu stworzenia dokładnego spisu roślin oraz umożliwienia identyfikacji w toku dalszych badań. Podczas kwitnienia męskie rośliny zostały usunięte w celu uniknięcia zapylenia. Spośród pozostałych żeńskich roślin wybrano 50 zdrowych osobników z różnych poletek. Materiał z tych roślin analizowano pod kątem zawartości kanabinoidów, w różnych stadiach wzrostu. W oparciu o wyniki uzyskane podczas wzrostu wegetatywnego, z kilku wybranych osobników pobrano sadzonki w celu dalszej uprawy. Klony te przeniesiono do pomieszczenia i trzymano w fazie wegetatywnej pod kombinacją 1000 watowych lamp MH i HPS. Klony uprawiane w pomieszczeniu identyfikowano na podstawie zawartości THC i innych kanabinoidów, i powiązano z odpowiednią rośliną–matką uprawianą na polu. Rośliny zostały dokładnie oznaczone i podzielone na kategorie bazując na informacjach o ich polnych roślinach-matkach. Tak wyhodowane rośliny posłużyły jako rośliny-matki uprawiane w pomieszczeniu (MP-indoor). Dla naszych badań został wybrany klon z rośliny z pola, o identyfikatorze P1-2714.

Po 6 miesiącach aklimatyzacji i wzrostu w fazie wegetatywnej pod oświetleniem 18/6, pobrano odcinki węzłowe z wybranej rośliny macierzystej do mikrorozmnażania in vitro (IVP). Po 6 tygodniach ustabilizowane i dobrze rozwinięte pędy przesadzono do medium ukorzeniającego. W tym samym czasie,z tej samej rośliny-matki pobrano klasyczne klony(VP), w postaci 6-10 cm fragmentów łodyg, i ukorzeniano w doniczkach torfowych o średnicy 5cm. Po 5 tygodniach dobrze ukorzenione IVP oraz VP przesadzono do identycznych doniczek (10cm średnicy) z identycznym medium (50% włókno kokosowe/50% komercyjna mieszanka glebowa). Oba rodzaje klonów utrzymywano w identycznych warunkach: 25 stopni (+/-3), wilgotność 55% (+/-5), 7x 1000w HID, 7x 1000w HPS, 32,5 m2. Po 4 tygodniach wzrostu rośliny przesadzono do doniczek o średnicy 30 cm.

Po kolejnych 6 tygodniach wzrostu pobrano próbki ze szczytowych części roślin w celu oznaczenia zawartości kanabinoidów w szczycie fazy wegetatywnej. Następnie oba rodzaje klonów przełączono na kwitnienie (12/12). Zapoczątkowanie kwitnienia nastąpiło w przeciągu 15 dni. Okresowe pobieranie próbek do oznaczania kanabinoidów odbywało się w tym samym czasie we wszystkich grupach roślin (klony in vitro, klony normalne, rośliny matki). Analizowano 9 klonów IVP i 9 klonów VP. Do porównania użyto danych płynących z analizy próbek pobranych w 15, 24,26, i 28 tygodniu życia roślin. Wiek liczony był od dnia pobrania klonów w przypadku VP, i od dnia przeniesienia do medium ukorzeniającego w przypadku IVP.

Rys. 2 Schemat metod użytych do wykonania porównania pomiędzy poszczególnymi grupami roślin
Schemat-metod-porównanie-pomiędzy-poszczególnymi-grupami-1.jpeg
Schemat-metod-porównanie-pomiędzy-poszczególnymi-grupami-1.jpeg (105.01 KiB) Przejrzano 5354 razy
Mikrorozmnażanie oraz ‘hartowanie’ mikrosadzonek
Szczytowe segmenty węzłowe zawierające boczne pędy ( ok. 1 cm długości) zostały przeszczepione w celu uzyskania kultur in vitro. Przeszczepiany materiał pobierany był z roślin-matek rosnących w pomieszczeniu (MP-indoor). Powierzchnia przeszczepianego materiału została zdezynfekowana przez zanurzenie w roztworze zawierającym 0,5 % NaOCl (15 % roztwór wybielacza) oraz 0,1% Tween 20 przez 20 minut. Następnie pobrany materiał przemywano 3 krotnie destylowaną wodą przez 5 minut, i zaszczepiono na pożywce. Mikrorozmnażanie i hartowanie przeprowadzano według protokołu opracowanego przez Lata i in. [19]

Klonowanie tradycyjne
Świeże fragmenty szczytowe łodyg o długości 6-10 cm zawierające co najmniej 2 węzły zostały pobrane z tej samej rośliny-matki co IVP. Przy użyciu sterylnego ostrza wykonano cięcie pod kątem 45 stopni zaraz poniżej węzła, i od razu zanurzone w wodzie destylowanej, w celu uniknięcia tworzenia się pęcherzyków powietrza w łodydze. Około 2 cm dolny kawałek sadzonki zanurzano w 0,1% IBA. Podobnie jak w przypadku mikrosadzonek in vitro, klasyczne klony umieszczono w 5 cm doniczkach torfowych zawierających włókno kokosowe i mix ziemi komercyjnej w stosunku 1:1. Co najmniej jeden z węzłów pozostawał poniżej poziomu gleby w celu efektywnego ukorzenienia. Tak przygotowane klony oraz klony IVP utrzymywano w identycznych warunkach pod lampami fluorescencyjnymi. Pomimo tego że proces ukorzeniania zapoczątkowany został w ciągu 2-3 tygodni, większość klonów utrzymywano w tych warunkach przez 6 tygodni, w celu zapewnienia lepszego wzrostu wegetatywnego.

Analizy chemiczne
(tu pomijam dokładny opis procedury, bo kto ma dostęp do chromatografu gazowego ten wie, a kto nie ma dostępu temu nie jest to potrzebne) Próbki do badań pobierane były ze szczytowych fragmentów VP , IVP i MP-indoor w różnych okresach wzrostu i rozwoju roślin. Z materiału roślinnego każdej próbki wykonano 3 powtórzenia analiz. Wykorzystano procedurę opracowaną przez Ross i in. (metoda ta była wykorzystywana przez gnidy z DEA do analiz skonfiskowanej marihuany)[20].

Analizy statystyczne
Analizy statystyczne wykonano przy użyciu programu SAS 9,1, wykorzystując jednoczynnikową analizę wariancji ANOVA (model efektów stałych) oraz testy post hoc Tukey’a.

Dodatkowe informacje
415px-Dodatek-1.png
415px-Dodatek-1.png (206.35 KiB) Przejrzano 5354 razy
Rezultaty i dyskusja
Schematyczny diagram przedstawiający projekt tego eksperymentu został zamieszony na rysunku nr.2 (powyżej). Zawartość kanabinoidów w poszczególnych etapach wzrostu rośliny matki uprawianej na polu została przedstawiona w tabeli nr. 1.
800px-Tabela_1-1.png
800px-Tabela_1-1.png (94.58 KiB) Przejrzano 5354 razy
Na ogół zawartość THC rośnie wraz ze wzrostem rośłiny aż do najwyższych wartości w szczytowym okresie kwitnięcia, następnie obserwowany jest spadek wraz z procesem starzenia się rośliny. W warunkach polowych najwyższa koncentracja THC (11,53-13,54%) została zaobserwowana u roślin pomiędzy 90 a 105 dniem (pomiędzy fazą III i IV).Spadek zawartości THC został zaobserwowany u roślin 120-dniowych. Interesującym jest fakt, że stężenie THCV stanowiło mniej niż 1% całkowitego stężenia THC w okresie zbiorów. THCV będąc homologiem THC, posiada bardzo podobną strukturę chemiczną do THC, co utrudnia rozdzielenie tych związków. Wyższe stężenie THCV w materiale roślinnym powoduje że proces izolacji czystego THC staje się droższy i bardziej skomplikowany. W wyniku tego proces selekcji roślin-matek na podstawie stężenia kanabinoidów może mieć kluczową rolę w procesie izolacji THC do celów farmaceutycznych. W związku z tym na roślinę matkę w tym eksperymencie wybrano osobnika o wysokim stężeniu THC a niskim stężeniu THCV.

Klony z rośliny matki rosnącej na zewnątrz utrzymywano w fazie wegetatywnej w kontrolowanych warunkach przez 6 miesięcy. Po tym okresie fragmenty łodyg zawierające boczne pędy zostały użyte do klonowania in vitro. Wybrana metoda mikrorozmnażania roślin jest relatywnie łatwa i cechuje się wysoką skutecznością. Ponadto obrana metoda oparta o fragmenty z bocznymi pędami zmniejsza ryzyko genetycznej niestabilności rośliny, gdyż istniejące już merystemy są bardziej odporne na powstawanie zmian w genomie, w porównaniu do metod opartych na różnicowaniu się kallusa.
800px-Tabela2-2.png
800px-Tabela2-2.png (218.8 KiB) Przejrzano 5354 razy
Najlepszy wynik w przypadku indukcji pędów zaobserwowano w przypadku medium Murashige’a i Skoog’a zawierającego 0,5 µM TDZ. Dobrze rozwinięte pędy zostały przeniesione do medium zawierającego 0,25 µM TDZ, uzupełnionego o węgiel aktywowany oraz różne stężenia IAA, IBA oraz NAA w celu ukorzenienia sadzonek. Należy zaznaczyć, że klasyczne klony został pobrane w momencie gdy klony in vitro zostały przeniesione do medium ukorzeniającego. Oba rodzaje klonów utrzymywano w fazie wegetatywnej w takich samych warunkach pod lampami fluorescencyjnymi. Najwyższe prawdopodobieństwo ukorzenienia w przypadku klonów in vitro zaobserwowano w przypadku pożywki zawierającej 0,25 µM TDZ, 500mg/l węgla aktywowanego, oraz 2,5 µM IBA. Próbki do analiz stężenia kanabinoidów zostały pobrane ze wszystkich 3 grup roślin zaraz przed przełączeniem oświetlenia na 12/12. Kwitnienie zostało zaobserwowane po 15 dniach w przypadku roślin matek, oba rodzaje klonów zakwitły po 17 dniach.

Badanie to miało na celu określenie czy klony in vitro (hodowane przy użyciu specjalnej procedury[19] ) będą miały identyczne stężenie kanabinoidów co klony pobrane w klasyczny sposób. Istotne różnice pomiędzy roślinami-matkami a klonami in-vitro obserwowano w przypadku wykorzystania innych metod mikrorozmnażania, w wyniku zachodzenia wielu mutacji somatycznych [24] [25] [26] [27]. Ponieważ celem tego badania było opracowanie metody mikrorozmnażania in vitro, która mogła by być użyta w komercyjnych projektach uprawy Cannabis sativa, niezbędne było upewnienie się, że wybrana metoda nie powoduje nieporządanych mutacji mających wpływ na metabolizm, a co za tym idzie na stężenie kanabinoidów. W tym celu badano stężenia kanabinoidów roślin matek i pobranych klonów w różnych stadiach rozwoju roślin.
354px-Diagramy-1.jpeg
354px-Diagramy-1.jpeg (46.67 KiB) Przejrzano 5354 razy
Stężenie kanabinoidów w 3 badanych grupach roślin (klony VP i IVP, MP-indoor) okazało się identyczne. Podobne wyniki otrzymali Ma i Gang [28] w przypadku imbiru uprawianego w szklarni i klonów pobranych z tych roślin. Stabilność genetyczna mikrosadzonek hodowanych przy użyciu opracowanej przez nas metody została sprawdzona przy użyciu markerów ISSR [29].

Różnice w zawartości Δ9-THC podczas poszczególnych faz wzrostu i rozwoju roślin zostały przedstawione na rysunku 4. Najwyższe stężenie Δ9-THC zostało osiągnięte w 24 tygodniu życia roślin i utrzymywało się przez około 2 tygodnie.
419px-Stężenia-1.jpeg
419px-Stężenia-1.jpeg (66 KiB) Przejrzano 5354 razy
Spadek stężenia CBC wraz z wiekiem obserwowany był we wszystkich grupach roślin. Najsilniejsze zmniejszenie zawartości CBC występowało zaraz po zakończeniu fazy wegetatywnej, w późniejszych okresach spadek ten był mniej intensywny. Zmiany stężenia CBG w czasie trwania życia roślin były podobne do zmian obserwowanych w przypadku THC, THCV i CBD. We wszystkich badanych grupach roślin najwyższe stężenie CBG przypadało na szczyt fazy kwitnięcia (5x wyższe stężenie niż w fazie wegetatywnej), a podczas okresu starzenia się rośliny ilość tego kanabinoidu zmniejszała się.


W przeciwieństwie do CBC, w przypadku CBN zaobserwowano stały przyrost jego zawartości w ciągu wszystkich faz wzrostu roślin, od fazy wegetatywnej do fazy zamierania. W fazie starzenia się rośliny zaobserwowano istotne statystycznie różnice w stężeniu CBN między obydwoma rodzajami klonów. W okresie zbiorów brak istotnych różnic pomiędzy grupami. Porównanie wszystkich trzech grup roślin (VP,IVP,MP-indoor) do rośliny matki uprawianej na dworze wykazało, że charakteryzowała się ona wyższą zawartością THC. Wszystkie badane rośliny były identyczne genetycznie, więc fakt ten można wytłumaczyć różnicami w warunkach wzrostu pomiędzy uprawą wewnątrz i na dworze. Podczas słonecznego letniego dnia w Mississippi natężenie światła wynosi około 1500 µmol*m−2*s−1, podczas gdy intensywność światła w pomieszczeniu wynosiła około 700 µmol*m−2*s−1. W poprzednich badaniach zanotowano szybsze zachodzenie procesu fotosyntezy oraz lepszy wzrost w 30 stopniach C i przy natężeniu światła 1500 µmol*m−2*s−1.

Podsumowując, rośliny wyhodowane przy użyciu metod in vitro nie różnią się zawartością kanabinoidów od roślin wyhodowanych przy pomocy tradycyjnych klonów, a także od roślin matek z których pobierano materiał do klonowania. Wyniki te potwierdzają identyczność klonów in vitro i roślin matek, a także sugerują że klonowanie in vitro nie wprowadza znaczących zmian w mechanizmach biochemicznych roślin. Metoda klonowania in vitro może być stosowana w komercyjnych hodowlach o przeznaczeniu farmaceutycznym.